

1

Request #: HUTRR84

Title: Lighting And Illumination

Spec Release: 1.12

Received: 14 May 2018

Requester: Nathan Sherman
Company: Microsoft
Phone:
Email: nathans@microsoft.com

Current Status: Approved 4-0-0

Submitted: 15 May 2018

Voting Ended: 6 June 2018

2

Lighting and Illumination Page (0x59)

1 Summary
This request is to establish a new Usage Page for Lighting/Illumination devices (in particular LampArray). LampArray devices have

one or more Lamps (i.e. lights/LEDs/bulbs, etc…) that can be directly manipulated; setting state (on/off), brightness and color

(RGB). While today HID does have an LED page (0x08), it restricts Lamps to specific purposes (e.g. Caps-Lock, Num-Lock) and to

specific colors (Red/Green/Amber). The proposed LampArray permits a much richer property model for both the LampArray and

individual Lamps and finer control over the Lamp state.

Below is a brief list of observed device classes (in the PC space) that often contain controllable Lamps, using vendor specific

protocols (often built by vendors on top of HID)

• Gaming Keyboards

• Gaming Keypads

• Gaming Mice

• Gaming Mousepads

• Headsets

• RAM Sticks

• Motherboards

• CPU Fans

• PC Case Lights

• Light Bulbs

2 Proposal
Add the following to Table 1: Usage Page Summary:

Field Value

Page ID 0x59

Page Name LightingAndIllumination

Section or Document (next available per technical editor)

Edit the appropriate Reserved range in Table 1 in which the Page 0x59 lies to not include Page 0x59.

Create a new section for the Lighting and Illumination Page, with usage table and add the follow to it.

3

Table (1): Lighting and Illumination Page

Usage ID Usage Name Usage Type Section

0x00 Undefined
0x01 LampArray CA 3.5.1
0x02 LampArrayAttributesReport CL 3.5.2
0x03 LampCount SV/DV 3.5.2
0x04 BoundingBoxWidthInMicrometers SV 3.5.2
0x05 BoundingBoxHeightInMicrometers SV 3.5.2
0x06 BoundingBoxDepthInMicrometers SV 3.5.2
0x07 LampArrayKind SV 3.5.2
0x08 MinUpdateIntervalInMicroseconds SV 3.5.2
0x09-1F Reserved

0x20 LampAttributesRequestReport CL 3.5.3
0x21 LampId SV/DV 3.5.3
0x22 LampAttributesResponseReport CL 3.5.3
0x23 PositionXInMicrometers DV 3.5.3
0x24 PositionYInMicrometers DV 3.5.3
0x25 PositionZInMicrometers DV 3.5.3
0x26 LampPurposes DV 3.5.3
0x27 UpdateLatencyInMicroseconds DV 3.5.3
0x28 RedLevelCount DV 3.5.3
0x29 GreenLevelCount DV 3.5.3
0x2A BlueLevelCount DV 3.5.3
0x2B IntensityLevelCount DV 3.5.3
0x2C IsProgrammable DV 3.5.3
0x2D InputBinding DV 3.5.3
0x2E-4F Reserved
0x50 LampMultiUpdateReport CL 3.5.4
0x51 RedUpdateChannel DV 3.5.4
0x52 GreenUpdateChannel DV 3.5.4
0x53 BlueUpdateChannel DV 3.5.4
0x54 IntensityUpdateChannel DV 3.5.4
0x55 LampUpdateFlags DV 3.5.4
0x56-5F Reserved
0x60 LampRangeUpdateReport CL 3.5.4
0x61 LampIdStart DV 3.5.4
0x62 LampIdEnd DV 3.5.4
0x63-6F Reserved
0x70 LampArrayControlReport CL 3.5.5
0x71 AutonomousMode DV 3.5.5
0x72-FFFF Reserved

Add to a new description section (per technical editor) after the Usage Page table with the following text

4

3 LampArray Operation
Typical LampArray operation has several phases;-

• Interrogation of LampArray device attributes.

• Interrogation of individual Lamp attributes.

• Disabling AutonomousMode on the device.

• Updating Lamp state.

• Enabling AutonomousMode on the device.

While it is not required that these phases are done in order (and no device should ever assume it), as we outline below, it should be

clear that this is the most reasonable practice for a Host. See Figure 1 Typical LampArray Operation

Note: Retrieval of Lamp colour state is not outlined since state is controlled exclusively by the Host which always knows the state it

last set the device to. Future additions to this specification may include setting persistent state and its retrieval.

Requirements

• Distance measurements to be given in micrometers (µm). For a signed 32bit integer (largest supported by HID), this gives a

range from 1µm to >2km, which seems sufficient to describe any device.

• Time measurements to be given in microseconds (µs). For a signed 32bit integer (largest supported by HID), this gives a

range from 1µs to >30minutes)

Host Device

GetReport(LampAttributesResponseReport)

LampAttributesResponseReport(LampId)

SetReport(LampArrayControlReport(AutonomousMode == disabled))

SetReport(LampMultiUpdateReport(LampUpdateComplete == false))

SetReport(LampMultiUpdateReport(LampUpdateComplete == false))

SetReport(LampRangeUpdateReport(LampUpdateComplete == false))

SetReport(LampMultiUpdateReport(LampUpdateComplete == true))

forall LampIds

SetReport(LampArrayControlReport(AutonomousMode == enabled))

GetReport(LampArrayAttributesReport)

LampArrayAttributesReport

SetReport(LampAttributesRequestReport(LampId))

FIGURE 1 TYPICAL LAMPARRAY OPERATION

5

3.1 LampArray Attributes and Interrogation
Every LampArray is expected to have attributes describing the physical device that contains the LampArray. This includes the

number of Lamps (LampCount), the kind of LampArray and dimensions of a logical bounding box. These values are static and can

never change. LampArrayAttributesReport is used to retrieve these attributes.

LampArrayKind describes the type of physical device that contains the LampArray (e.g. keyboard/mouse/gamecontroller…). This

helps the Host know what Lamp Attributes it can expect and associate it with other HID devices (keyboard/mouse). The kind must

use one of LampArrayKind* values from the table in 3.6.1.

BoundingBox*InMicrometers describes a logical box encompassing the physical device. Origin (0,0,0) is that of the right-hand

coordinate system (as prescribed in the HID spec 5.9 Orientation) which denotes the upmost, farthest, left-hand corner of the box.

This box is used to provide the bounds of the device (without the detail/complexity of a true 3D model) and to provide a reference

origin for Lamp coordinates. All sizes/coordinates/positions are thus positive offsets from this origin.

The dimensions and coordinate system is illustrated below with a typical keyboard and mouse in Figure 2, Figure 3 respectively.

In particular, notice:-

• Width is always perpendicular to the user when this keyboard/mouse is naturally orientated.

• Origin (0,0,0) is not flush with the corner of the keyboard as the device has a curved rise in the middle.

• Origin (0,0,0) is nowhere near the mouse body.

FIGURE 2 KEYBOARD WITH LABELED DIMENSIONS AND ORIGIN. LAMPS EXIST BENEATH EVERY KEY, THE BRANDING AT THE TOP/MIDDLE, AND

ACCENT LIGHTING ALONG THE LEFT AND RIGHT SIDES. EXAMPLE SIZES GIVEN FOR EACH DIMENSION (IN MICROMETERS).

http://www.usb.org/developers/hidpage/HID1_11.pdf

6

FIGURE 3 MOUSE WITH LABELED DIMENSIONS AND ORIGIN. EXAMPLE SIZES GIVEN FOR EACH DIMENSION (IN MICROMETERS).

MinUpdateIntervalInMicroseconds is the minimal time interval required for the Host to wait before sending two updates for

any one Lamp. This is to prevent the Host overwhelming the device by sending too many Lamp*UpdateReports too quickly. A

device must be able to accommodate updating every Lamp (individually) before requiring the Host to wait for the interval. This

means a device must be able to receive and process (consecutively) the minimum number of LampMultiUpdateReports required

to update all Lamps. This is so the Host knows it can update every Lamp on the device before waiting for the interval. If a Host

misbehaves and sends more reports than allowed before waiting for the interval, the device can ignore those reports.

For example, a device where LampArrayAttributes:LampCount==40 and LampMultiUpdate:LampCount==8, requires a

minimum of (40/8=) 5 LampMultiUpdateReports; so 5 reports must be accepted before the Host is required to wait the interval.

7

3.2 Lamp Attributes and Interrogation

3.2.1 LampAttributesRequestReport
Having retrieved the LampCount, interrogation of a Lamp begins by the Host sending a LampAttributesRequestReport (via Set

Report) with the LampId of the first Lamp to interrogate. Each Lamp must have a unique LampId, numbered from 0 to

LampCount-1 (inclusive). Lamps without a LampId cannot be referenced and must not be included in the LampArray. An invalid

LampId, must be treated by the device as LampId==0.

It is recommended that LampIds are assigned to Lamps in a methodical manner (e.g. grid, starting from top-left) to take the most

advantage of the LampRangeUpdateReport described below. This can significantly reduce traffic overhead of the update.

3.2.2 LampAttributesResponseReport
The Host then requests a LampAttributesResponseReport (via GetReport) to which the device returns the attributes of the

previously requested LampId.

Upon a successful response, the device will automatically (and internally) increment the previously sent LampId such that the next

time the Host sends a LampAttributesResponseReport, the device will return the attributes of the LampId+1 Lamp. Further

requests monotonically increase the previous LampId.

After LampId==LampCount-1, the device will reset the internal LampId to 0, and continue to monotonically increase after each

successful response. In this way a Host need only send a single LampAttributesRequestReport for the first LampId to inspect

(e.g. 0), then request multiple LampAttributesResponseReports; one for each further Lamp to inspect. Alternatively, a Host

can explicitly send a LampAttributesRequestReport before each LampAttributesResponseReport instead of taking

advantage of the automatic device increment; or a mix of the two patterns.

The default internal LampId is 0.

The Host must always check the LampId of the returned report to ensure it was expected (as an invalid LampId will always be

treated as LampId==0)

3.2.2.1 Example

Sample operations of LampArray with 6 Lamps. Observe (#1-8) how the Host sets the LampId and then can receive multiple

Response reports where the LampId increments by 1 each time until it resets to 0. Additionally see (#9-14) that the Host can still

explicitly request which Lamp it should receive attributes for (e.g. if the Host wishes to request Lamps out of order).

ReportType Direction LampId
1 LampAttributesRequestReport OUT 0
2 LampAttributesResponseReport IN 0
3 LampAttributesResponseReport IN 1
4 LampAttributesResponseReport IN 2
5 LampAttributesResponseReport IN 3
6 LampAttributesResponseReport IN 4
7 LampAttributesResponseReport IN 5
8 LampAttributesResponseReport IN 0
9 LampAttributesRequestReport OUT 2
10 LampAttributesResponseReport IN 2
11 LampAttributesRequestReport OUT 4
12 LampAttributesResponseReport IN 4
13 LampAttributesResponseReport IN 5
14 LampAttributesResponseReport IN 0

8

3.2.3 Lamp Attributes
All Lamp attributes are static and can never change across device resets or external events.

PositionX/Y/Z describes the location of the Lamp (in 3D space) relative to the bounding-box origin defined in 3.1. Such data is

useful for the Host when creating effects (e.g. animation moving from left to right). All Lamps are assumed to be a single,

dimensionless point of zero size.

LampPurposes identifies the high-level purpose/s of the Lamp. This helps the Host determine what scenarios the Lamp can be

used. The value must be composed of one or more LampPurposes* flags described in the table 3.6.2.

In the figures below we can see Lamps with different LampPurposes labeled with example X/Y/Z positions.

FIGURE 4 KEYBOARD CONTROL LAMP UNDER THE ESC KEY. POSITION OF LAMP RELATIVE TO THE BOUNDING BOX (DESCRIBED ABOVE) LABELED IN

MICROMETERS.

9

FIGURE 5 KEYBOARD BRANDING LAMP UNDER THE LOGO. POSITION OF LAMP RELATIVE TO THE BOUNDING BOX (DESCRIBED ABOVE) LABELED IN

MICROMETERS.

FIGURE 6 ACCENT LAMP ON THE LHS (PART OF ACCENT LIGHTING). POSITION OF LAMP RELATIVE TO THE BOUNDING BOX (DESCRIBED ABOVE)

LABELED IN MICROMETERS.

10

UpdateLatencyInMicroseconds describes the smallest time interval between a device receiving a Lamp*UpdateReport and

the state emanating from the device. This includes the time spent processing the report and the update latency of the specific Lamp

(e.g. LEDs switch faster than incandescent lamps). This must be determined by the manufacturer and an upper bound given from a

Lamp being completely off to any color intensity. This allows a Host to coordinate effects between multiple devices. It is expected

(though not required) that this value will be identical for all Lamps of the same electrical/mechanical type on a device.

InputBinding associates a Lamp with either a keyboard/keypad key or a mouse button. This is to support today’s common case

of keyboards/mice with individually backlit keys/buttons. If the LampArrayKind declares the device as a keyboard,

InputBinding must use one of the unsigned 16bit Keyboard* Usages from the Keyboard/Keypad UsagePage (0x07). If declared

as a mouse, InputBinding must use one of the unsigned 16bit Button* Usages from the Button UsagePage (0x09) in the range of

Button1 (0x01) to Button5 (0x05) inclusive. No more than 5 buttons are supported for any mouse.

If a key/button is not associated with this Lamp or it is not declared as either a keyboard or mouse, this value must be 0; non-zero

values must be ignored by the Host.

http://www.usb.org/developers/hidpage/Hut1_12v2.pdf
http://www.usb.org/developers/hidpage/Hut1_12v2.pdf

11

3.2.4 Color Attributes
LampArrays support both FixedColor and Programmable Lamps. For programmable Lamps (indicated by

IsProgrammable==1), *LevelCount values indicate the levels of intensity supported by the red, green, and blue color channels,

each of which can be varied independently. Zero indicates an “off” state, and non-zero values indicate varying levels of color

intensity. For example:

• A value of zero indicates that the color channel is not supported.

• A value of one indicates that the only intensities supported for the color channel are fully on and fully off.

• A value of 10 indicates that ten levels of intensity are supported, in addition to being turned off.

The highest non-zero intensity level corresponds to the maximum possible brightness for that color channel. Intensity values map as

closely as possible to a visually linear brightness curve.

IntensityLevelCount indicates how many levels of overall intensity are supported for a Lamp. Zero indicates an “off” state, and

non-zero values indicate varying levels of overall intensity/gain for a Lamp. Any number of intensity levels > 1 is supported. The

highest non-zero intensity value corresponds to unity gain (maximum intensity), with intermediate values describing relative linear

gain.

FixedColor Lamps (IsProgrammable==0) have a single fixed color at maximum intensity described by the relative color

intensities of RedLevelCount, GreenLevelCount, BlueLevelCount. IntensityLevelCount can optionally be described

(to vary overall intensity), but minimally most support 0 (off), 1 (on); intermediate intensity levels are scaled.

3.2.5 Color Attributes Examples
The table below illustrates examples of programmable Lamps, and how they are expressed via RedLevelCount,

GreenLevelCount, BlueLevelCount, IntensityLevelCount.

Red Green Blue Intensity Meaning

1 1 0 1 A lamp that can be red, yellow, or green. The only intensities
available are on or off.

1 0 1 32 A lamp that can be red, blue, or purple. The overall intensity
of the lamp can be set to one of 32 levels, but the relative
intensity of the red/blue channels cannot.

16 16 0 1 A red/green lamp that supports 256 unique colors.

255 255 255 1 An RGB lamp that supports 16,777,216 unique colors.

12

3.3 LampArrayControlReport
This report is defined to control various device-wide settings. All settings are non-persistent unless explicitly marked.

3.3.1 AutonomousMode
AutonomousMode is a boolean field indicating whether the device can decide whether/how to update Lamps itself, or if the Host

has the exclusive ability to set/update the Lamp state. No source other than the Host can modify Lamp state while field is

disabled/false. When enabled/true, the Lamp state can be set by other sources (e.g. Lamp state set manually on device or reverts to

an embedded default effect) and any Lamp*UpdateReports can be ignored. Default state for this field is enabled/true. The device

must always handle LampArrayAttributesReports, LampAttributesRequestReports,

LampAttributesResponseReports, regardless of this field state.

When disabled, only the Host may change the Lamp state (via Lamp*UpdateReports). Once disabled (and was previously enabled,

but before sending Lamp*UpdateReports) the device must ‘pause’ any playing effect it started and maintain Lamps to whatever

was last set by the device (e.g. if displaying solid blue in autonomous mode, once disabled, solid blue must persist). If the field was

previously enabled (and is set to enabled again), it is a no-op. Similarly, disabling when already disabled is a no-op.

After the field is disabled, sent Lamp*UpdateReports will change the Lamp state from the last device-set state. It is up to the Host

to ‘override’ the persisted state by sending Lamp*UpdateReports. The Host with guarantee to wait for

MinUpdateIntervalInMicroseconds before sending its first Lamp*UpdateReport.

If this field is absent, it means no autonomous mode is supported. If supported, the device should default to enabled/true.

13

3.4 Updating Lamp State
Two reports are defined (LampMultiUpdateReport, LampRangeUpdateReport) to accommodate expected classes of updates.

Both updates are non-persistent, such that if a device loses power, or is moved to a different Host, the Lamp returns to it’s default

state. Default state for all Lamps is ‘off’ (RGBI=0,0,0,0).

Update reports can contain flags (LampUpdateFlags) to describe the update; currently, LampUpdateComplete is the only valid

flag. LampUpdateComplete is set by the Host when the report is the last update in a batch of updates, and the device should alter

the Lamp states all at once. Devices can wait until an update with this flag has been received before applying any of the previous

updates. The Host guarantees to not send more than 1 update with this flag every MinUpdateIntervalInMicroseconds.

3.4.1 LampMultiUpdateReport
LampMultiUpdateReport updates the color of multiple Lamps in a single request, where all four channels

(Red/Green/Blue/Intensity) can be set at once for given Lamps. The MaxLogicalSize of the LampCount Usage in the descriptor

defines the number of available update-slots. Within the report, LampCount identifies the number of update slots to be examined

(starting from the first slot). LampIds do not have to be ordered (e.g. ascending), but update-slot position identifies corresponding

RGBI tuple. Update-slots must always be filled from 0 to max(LampCount). Any unused slot must be ignored by the device. (It is

recommended the Host set both the LampId and the corresponding channel intensities to 0).

For FixedColor Lamps, only the Intensity channel is examined by the device (i.e. Red/Green/Blue channels are always ignored; as

a best practice these channels should always be set to 0 by the Host).

If any error is detected by the device in the report, the device shall ignore the entire report. Errors include:-

• Any LampId >= Device LampCount

• *Channel > *LevelCount described by Lamps’ attributes. (e.g. if a Lamp had RedLevelCount==100 and an update set

the channel to 101)

• Identical LampId in multiple slots.

In the example below is a LampMultiUpdateReport which has 8 update slots and declares it has 5 Lamps to update; slots 6/7/8

are hence ignored by the device. “ LampId#1” (0x19) corresponds to “RGBI tuple #1” (FF 00 FF 80) etc…

LampCount 0x05

LampId #1 0x19

LampId #2 0x23

LampId #3 0x72

LampId #4 0x56

LampId #5 0x64

LampId #6 (ignored)

LampId #7 (ignored)

LampId #8 (ignored)

RGBI tuple #1 0xFF 0x00 0xFF 0x80

RGBI tuple #2 0x80 0x80 0xFF 0xFF

RGBI tuple #3 0x00 0x00 0x80 0xFF

RGBI tuple #4 0xFF 0x80 0x00 0x80

RGBI tuple #5 0xFF 0xFF 0x00 0xFF

RGBI tuple #6 (ignored)

RGBI tuple #7 (ignored)

RGBI tuple #8 (ignored)

14

3.4.2 LampRangeUpdateReport
LampRangeUpdateReport allows multiple Lamps to be updated based on the range between two LampIds. LampIdStart and

LampIdEnd are both included in the range. The single Red/Green/Blue/Intensity color is applied to every Lamp within the range. A

common use-case for range to turn all Lamps ‘off’ (LampIdStart==0, LampIdEnd==(LampCount-1), RGBI==0).

For FixedColor Lamps, Red/Green/Blue channels are always ignored.

If any error is detected by the device in the report, the device shall ignore the entire report. Errors include:-

• LampIdStart > LampIdEnd

• LampIdStart || LampIdEnd >= Device LampCount

• *Channel > *LevelCount described by any Lamps’ attributes within the range. (i.e. The Host must ensure all Lamps in

the described range support the desired channel intensities)

FixedColor Lamps may be mixed with Programmable Lamps within the range so long as the desired

IntensityUpdateChannel is within range. RGB channels for FixedColor Lamps will be ignored.

In the example below, all Lamps between (and including) LampId=0x19 to LampId=0x31 are set to the corresponding RGBI value

(0xFF 0x00 0x00 0xFF).

LampIdStart 0x19

LampIdEnd 0x31

RGBI tuple 0xFF 0x00 0x00 0xFF

15

3.5 Usage Definitions

3.5.1 Application Usages

Usage Name Description
LampArray

CA - Applied to a collection containing LampArray attributes and reports.

3.5.2 LampArray Attributes Report

Usage Name Description
LampArrayAttributesReport CL – Feature – Applied to a collection containing the device attributes of a LampArray
LampCount SV/DV – Feature – Number of Lamps associated with a LampArray
BoundingBoxWidthInMicrometers SV – Feature – Width (X axis) of a logical bounding-box encompassing the device.

Must be a positive offset from the origin.
BoundingBoxHeightInMicrometers SV – Feature – Height (Y axis) of a logical bounding-box encompassing the device.

Must be a positive offset from the origin.
BoundingBoxDepthInMicrometers SV – Feature – Depth (Z axis) of a logical bounding-box encompassing the device.

Must be a positive offset from the origin.
LampArrayKind SV – Feature – Kind of LampArray. Must be one of the values defined in 3.6.1
MinUpdateIntervalInMicroseconds SV – Feature – Minimal time interval required between the Host sending two updates

for any one Lamp.

3.5.3 Lamp Attributes Report

Usage Name Description
LampAttributesRequestReport CL – Feature – Applied to a collection containing a LampId to request attributes for
LampAttributesResponseReport CL – Feature – Applied to a collection containing attributes corresponding to a requested

LampId
LampId SV/DV – Feature – Id of a Lamp. Valid range is between 0 and (LampCount – 1)
PositionXInMicrometers DV – Feature – X position (corresponding to Bounding Box Width) from origin
PositionYInMicrometers DV – Feature – Y position (corresponding to Bounding Box Height) from origin
PositionZInMicrometers DV – Feature – Z position (corresponding to Bounding Box Depth) from origin
LampPurposes DV – Feature – Purpose/s of a Lamp. Must be one or more flags from table in 3.6.2
UpdateLatencyInMicroseconds DV – Feature – Time interval between the device receiving an update for a Lamp and it

emanating from the device.
RedLevelCount DV – Feature – The number of red color intensities settable for this LampId.
GreenLevelCount DV – Feature – The number of green color intensities settable for this LampId.
BlueLevelCount DV – Feature – The number of blue color intensities settable for this LampId.
IntensityLevelCount DV – Feature – The number of color independent intensities settable for this LampId.
IsProgrammable DV – Feature – 1 if this Lamp has programmable colors, 0 if it doesn’t.
InputBinding DV – Feature –Keyboard* Usages from the Keyboard/Keypad UsagePage (0x07)

or Button* Usages from Button UsagePage (0x09)

16

3.5.4 Lamp Update Reports

Usage Name Description
LampMultiUpdateReport CL – Feature/Output – Applied to a collection containing updates for multiple Lamps, each Lamp

specified can have a different color.
LampRangeUpdateReport CL – Feature/ Output – Applied to a collection containing a single range update consisting of color

channels and LampIdStart/LampIdEnd. All Lamps within range are set to the same color.
LampUpdateFlags DV – Feature/Output – Flags associated with a Lamp*Update message. See table 3.6.3
RedUpdateChannel DV – Feature/Output – Red intensity of the new color for this LampId. Ignored unless Lamp

IsProgrammable is true.
GreenUpdateChannel DV – Feature/Output – Green intensity of the new color for this LampId. Ignored unless Lamp

IsProgrammable is true.
BlueUpdateChannel DV – Feature/Output – Blue intensity of the new color for this LampId. Ignored unless Lamp

IsProgrammable is true.
IntensityUpdateChannel DV – Feature/Output – Intensity/gain overall of the new color for this LampId.
LampIdStart DV – Feature/Output – The first LampId in the range of LampIds to update
LampIdEnd DV – Feature/Output – The last LampId in the range of LampIds to update

3.5.5 LampArray Control Report

Usage Name Description
LampArrayControlReport CL – Feature – Applied to a collection containing LampArray control fields
AutonomousMode DV – Feature – Boolean value indicating whether the device can set Lamp state

itself/autonomously (i.e. without the Host sending Lamp update messages). Default value is
enabled/true.

17

3.6 Enumeration Definitions

3.6.1 LampArrayKind Value Table

Name Description Value
Undefined Undefined 0x00

LampArrayKindKeyboard LampArray is part of a keyboard/keypad device 0x01

LampArrayKindMouse LampArray is part of a mouse 0x02

LampArrayKindGameController LampArray is part of a game-controller. (e.g.
gamepad, flightstick, sailing simulation device)

0x03

LampArrayKindPeripheral LampArray is part of a general peripheral/accessory
(e.g. speakers, mousepad, microphone, webcam)

0x04

LampArrayKindScene LampArray illuminates a room/performance-
stage/area (e.g. room light-bulbs, spotlights,
washlights, strobelights, booth-strips, billboard/sign,
camera-flash)

0x05

LampArrayKindNotification LampArray is part of a notification device 0x06

LampArrayKindChassis LampArray is part of an internal PC case component
(e.g. RAM-stick, motherboard, fan)

0x07

LampArrayKindWearable LampArray is embedded in a wearable accessory
(audio-headset, wristband, watch, shoes)

0x08

LampArrayKindFurniture LampArray is embedded in a piece of funiture (e.g.
chair, desk, bookcase)

0x09

LampArrayKindArt LampArray is embedded in an artwork (e.g. painting,
sculpture)

0x0A

Reserved Reserved 0x0B-0xFFFF

Vendor-Defined Vendor-Defined 0x10000-0xFFFFFFFF

3.6.2 LampPurposes Flags Table

Note: Flags are permitted to be combined. Lacking any flags for this field (i.e. 0x00) is undefined.

Name Description Flag
LampPurposeControl Control Lamp (e.g. button/key/slider etc…) 0x01

LampPurposeAccent Accent Lamp that doesn’t interact with the user (e.g. case fan LED,
illuminated side panels on a keyboard)

0x02

LampPurposeBranding Device branding (e.g. Manufacturer logo) 0x04

LampPurposeStatus Status Lamp (e.g. unread email, CPU temperature) 0x08

LampPurposeIllumination Illuminates an object that is outside of the LampArray (e.g. stage
spotlight, car headlights, camera flash)

0x10

LampPurposePresentation A Lamp the user directly looks at (e.g. within an artwork or costume) 0x20

Reserved Reserved 0x40-0xFFFF

Vendor-Defined Vendor-Defined 0x10000-0xFFFFFFFF

3.6.3 LampUpdateFlags Table

Note: Flags are permitted to be combined.

Name Description Flag
LampUpdateComplete Signals that this was the last update in a batch of updates. Device should now

process all precceding messages as a single update to Lamp state.

0x01

Reserved Reserved 0x02-0xFFFF

18

4 Example Descriptor

0x05, 0x59, // USAGE_PAGE (LightingAndIllumination)

0x09, 0x01, // USAGE (LampArray)

0xa1, 0x01, // COLLECTION (Application)

0x85, 0x01, // REPORT_ID (1)

0x09, 0x02, // USAGE (LampArrayAttributesReport)

0xa1, 0x02, // COLLECTION (Logical)

0x09, 0x03, // USAGE (LampCount)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x27, 0xff, 0xff, 0x00, 0x00, // LOGICAL_MAXIMUM (65535)

0x75, 0x10, // REPORT_SIZE (16)

0x95, 0x01, // REPORT_COUNT (1)

0xb1, 0x03, // FEATURE (Cnst,Var,Abs)

0x09, 0x04, // USAGE (BoundingBoxWidthInMicrometers)

0x09, 0x05, // USAGE (BoundingBoxHeightInMicrometers)

0x09, 0x06, // USAGE (BoundingBoxDepthInMicrometers)

0x09, 0x07, // USAGE (LampArrayKind)

0x09, 0x08, // USAGE (MinUpdateIntervalInMicroseconds)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x27, 0xff, 0xff, 0xff, 0x7f, // LOGICAL_MAXIMUM (2147483647)

0x75, 0x20, // REPORT_SIZE (32)

0x95, 0x05, // REPORT_COUNT (5)

0xb1, 0x03, // FEATURE (Cnst,Var,Abs)

0xc0, // END_COLLECTION

0x85, 0x02, // REPORT_ID (2)

0x09, 0x20, // USAGE (LampAttributesRequestReport)

0xa1, 0x02, // COLLECTION (Logical)

0x09, 0x21, // USAGE (LampId)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x27, 0xff, 0xff, 0x00, 0x00, // LOGICAL_MAXIMUM (65535)

0x75, 0x10, // REPORT_SIZE (16)

0x95, 0x01, // REPORT_COUNT (1)

0xb1, 0x02, // FEATURE (Data,Var,Abs)

0xc0, // END_COLLECTION

0x85, 0x03, // REPORT_ID (3)

0x09, 0x22, // USAGE (LampAttributesReponseReport)

0xa1, 0x02, // COLLECTION (Logical)

0x09, 0x21, // USAGE (LampId)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x27, 0xff, 0xff, 0x00, 0x00, // LOGICAL_MAXIMUM (65535)

0x75, 0x10, // REPORT_SIZE (16)

0x95, 0x01, // REPORT_COUNT (1)

0xb1, 0x02, // FEATURE (Data,Var,Abs)

0x09, 0x23, // USAGE (PositionXInMicrometers)

0x09, 0x24, // USAGE (PositionYInMicrometers)

0x09, 0x25, // USAGE (PositionZInMicrometers)

0x09, 0x27, // USAGE (UpdateLatencyInMicroseconds)

0x09, 0x26, // USAGE (LampPurposes)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x27, 0xff, 0xff, 0xff, 0x7f, // LOGICAL_MAXIMUM (2147483647)

0x75, 0x20, // REPORT_SIZE (32)

19

0x95, 0x05, // REPORT_COUNT (5)

0xb1, 0x02, // FEATURE (Data,Var,Abs)

0x09, 0x28, // USAGE (RedLevelCount)

0x09, 0x29, // USAGE (GreenLevelCount)

0x09, 0x2a, // USAGE (BlueLevelCount)

0x09, 0x2b, // USAGE (IntensityLevelCount)

0x09, 0x2c, // USAGE (IsProgrammable)

0x09, 0x2d, // USAGE (InputBinding)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x26, 0xff, 0x00, // LOGICAL_MAXIMUM (255)

0x75, 0x08, // REPORT_SIZE (8)

0x95, 0x06, // REPORT_COUNT (6)

0xb1, 0x02, // FEATURE (Data,Var,Abs)

0xc0, // END_COLLECTION

0x85, 0x04, // REPORT_ID (4)

0x09, 0x50, // USAGE (LampMultiUpdateReport)

0xa1, 0x02, // COLLECTION (Logical)

0x09, 0x03, // USAGE (LampCount)

0x09, 0x55, // USAGE (LampUpdateFlags)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x25, 0x08, // LOGICAL_MAXIMUM (8)

0x75, 0x08, // REPORT_SIZE (8)

0x95, 0x02, // REPORT_COUNT (2)

0xb1, 0x02, // FEATURE (Data,Var,Abs)

0x09, 0x21, // USAGE (LampId)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x27, 0xff, 0xff, 0x00, 0x00, // LOGICAL_MAXIMUM (65535)

0x75, 0x10, // REPORT_SIZE (16)

0x95, 0x08, // REPORT_COUNT (8)

0xb1, 0x02, // FEATURE (Data,Var,Abs)

0x09, 0x51, // USAGE (RedUpdateChannel)

0x09, 0x52, // USAGE (GreenUpdateChannel)

0x09, 0x53, // USAGE (BlueUpdateChannel)

0x09, 0x54, // USAGE (IntensityUpdateChannel)

0x09, 0x51, // USAGE (RedUpdateChannel)

0x09, 0x52, // USAGE (GreenUpdateChannel)

0x09, 0x53, // USAGE (BlueUpdateChannel)

0x09, 0x54, // USAGE (IntensityUpdateChannel)

0x09, 0x51, // USAGE (RedUpdateChannel)

0x09, 0x52, // USAGE (GreenUpdateChannel)

0x09, 0x53, // USAGE (BlueUpdateChannel)

0x09, 0x54, // USAGE (IntensityUpdateChannel)

0x09, 0x51, // USAGE (RedUpdateChannel)

0x09, 0x52, // USAGE (GreenUpdateChannel)

0x09, 0x53, // USAGE (BlueUpdateChannel)

0x09, 0x54, // USAGE (IntensityUpdateChannel)

0x09, 0x51, // USAGE (RedUpdateChannel)

0x09, 0x52, // USAGE (GreenUpdateChannel)

0x09, 0x53, // USAGE (BlueUpdateChannel)

0x09, 0x54, // USAGE (IntensityUpdateChannel)

0x09, 0x51, // USAGE (RedUpdateChannel)

0x09, 0x52, // USAGE (GreenUpdateChannel)

0x09, 0x53, // USAGE (BlueUpdateChannel)

20

0x09, 0x54, // USAGE (IntensityUpdateChannel)

0x09, 0x51, // USAGE (RedUpdateChannel)

0x09, 0x52, // USAGE (GreenUpdateChannel)

0x09, 0x53, // USAGE (BlueUpdateChannel)

0x09, 0x54, // USAGE (IntensityUpdateChannel)

0x09, 0x51, // USAGE (RedUpdateChannel)

0x09, 0x52, // USAGE (GreenUpdateChannel)

0x09, 0x53, // USAGE (BlueUpdateChannel)

0x09, 0x54, // USAGE (IntensityUpdateChannel)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x26, 0xff, 0x00, // LOGICAL_MAXIMUM (255)

0x75, 0x08, // REPORT_SIZE (8)

0x95, 0x20, // REPORT_COUNT (32)

0xb1, 0x02, // FEATURE (Data,Var,Abs)

0xc0, // END_COLLECTION

0x85, 0x05, // REPORT_ID (5)

0x09, 0x60, // USAGE (LampRangeUpdateReport)

0xa1, 0x02, // COLLECTION (Logical)

0x09, 0x55, // USAGE (LampUpdateFlags)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x25, 0x08, // LOGICAL_MAXIMUM (8)

0x75, 0x08, // REPORT_SIZE (8)

0x95, 0x01, // REPORT_COUNT (1)

0xb1, 0x02, // FEATURE (Data,Var,Abs)

0x09, 0x61, // USAGE (LampIdStart)

0x09, 0x62, // USAGE (LampIdEnd)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x27, 0xff, 0xff, 0x00, 0x00, // LOGICAL_MAXIMUM (65535)

0x75, 0x10, // REPORT_SIZE (16)

0x95, 0x02, // REPORT_COUNT (2)

0xb1, 0x02, // FEATURE (Data,Var,Abs)

0x09, 0x51, // USAGE (RedUpdateChannel)

0x09, 0x52, // USAGE (GreenUpdateChannel)

0x09, 0x53, // USAGE (BlueUpdateChannel)

0x09, 0x54, // USAGE (IntensityUpdateChannel)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x26, 0xff, 0x00, // LOGICAL_MAXIMUM (255)

0x75, 0x08, // REPORT_SIZE (8)

0x95, 0x04, // REPORT_COUNT (4)

0xb1, 0x02, // FEATURE (Data,Var,Abs)

0xc0, // END_COLLECTION

0x85, 0x06, // REPORT_ID (6)

0x09, 0x70, // USAGE (LampArrayControlReport)

0xa1, 0x02, // COLLECTION (Logical)

0x09, 0x71, // USAGE (AutonomousMode)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x25, 0x01, // LOGICAL_MAXIMUM (1)

0x75, 0x08, // REPORT_SIZE (8)

0x95, 0x01, // REPORT_COUNT (1)

0xb1, 0x02, // FEATURE (Data,Var,Abs)

0xc0, // END_COLLECTION

0xc0 // END_COLLECTION

